5.4 Indefinite Integrals and the Net Change Theorem/3: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
\int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C | \int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C \\[2ex] | ||
\frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +C]} \\[2ex] | |||
& ={\cos{x} - \frac{1}{3}\cdot 3\sin^2{x} \cos{x} +0} \\[2ex] | & ={\cos{x} - \frac{1}{3}\cdot 3\sin^2{x} \cos{x} +0} \\[2ex] |
Revision as of 17:14, 13 September 2022
Note: