5.4 Indefinite Integrals and the Net Change Theorem/3: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
\begin{align}
\begin{align}


\frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +C]} \\[2ex]
\frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +C]} &= {\cos{x} - \frac{1}{3}\cdot 3\sin^2{x} \cos{x} +0} \\[2ex]
 
& ={\cos{x} - \frac{1}{3}\cdot 3\sin^2{x} \cos{x} +0} \\[2ex]


& =\cos{x} - \sin^2{x}\cos{x} \\[2ex]
& =\cos{x} - \sin^2{x}\cos{x} \\[2ex]

Revision as of 17:15, 13 September 2022



Note: