5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
\int\frac{x^3-2\sqrt{x}}{x}dx &= \int\left(\frac{x^3}{x}-\frac{2\sqrt{x}}{x}\right)dx = \int\left(x^2-2x^{\frac{1}{2}-1}\right)dx = \int\left(x^2-2x^{-\frac{1}{2}}\right)dx \\[2ex] | \int\frac{x^3-2\sqrt{x}}{x}dx &= \int\left(\frac{x^3}{x}-\frac{2\sqrt{x}}{x}\right)dx = \int\left(x^2-2x^{\frac{1}{2}-1}\right)dx = \int\left(x^2-2x^{-\frac{1}{2}}\right)dx \\[2ex] | ||
&= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C = \frac{1}{3}x^3-4\sqrt{x}+C | &= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C \\[2ex] | ||
&= \frac{1}{3}x^3-4\sqrt{x}+C | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 17:31, 13 September 2022