5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
<math> | <math> | ||
\int(1+\tan^2{\alpha})\,d\alpha | \int(1+\tan^2{\alpha})\,d\alpha = \int 1+\frac{sin^2\alpha}{cos^2\alpha}d\alpha = \int\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}d\alpha | ||
\int 1+\frac{sin^2\alpha}{cos^2\alpha}d\alpha = | |||
\int\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}d\alpha | |||
\cos^2x+sin^2x=1 | \cos^2x+sin^2x=1 |
Revision as of 17:48, 13 September 2022
Note:
Or,