5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
\int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\frac{1}{cos^2\alpha}d\alpha = | \int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\frac{1}{cos^2\alpha}d\alpha = | ||
\int\sec^2\alpha \,d\alpha = | \int\sec^2\alpha \,d\alpha = \tan{alpha}+C | ||
\tan{ | |||
</math> | </math> | ||
Note: <math>\cos^2\alpha+sin^2\alpha=1</math> | Note: <math>\cos^2\alpha+sin^2\alpha=1</math> |
Revision as of 17:50, 13 September 2022
Note:
Or,
Note: