5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 11: Line 11:
<math>
<math>


\int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha  = \int\frac{1}{cos^2\alpha}d\alpha =  
\int(1+\tan^2{\alpha})\,d\alpha = \int\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)d\alpha = \int\left(\frac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}\right)d\alpha  = \int\frac{1}{cos^2\alpha}\,d\alpha =  


\int\sec^2\alpha \,d\alpha = \tan{alpha}+C
\int\sec^2\alpha \,d\alpha = \tan{\alpha}+C
</math>
</math>


Note: <math>\cos^2\alpha+sin^2\alpha=1</math>
Note: <math>\cos^2\alpha+sin^2\alpha=1</math>

Revision as of 17:51, 13 September 2022


Note:


Or,

Note: