5.5 The Substitution Rule/65: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:
\begin{align}
\begin{align}
\int_{1}^{2} x \sqrt{x-1}\,dx &= \int_{0}^{1} (u+1) \sqrt{u}\,du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du \\[2ex]
\int_{1}^{2} x \sqrt{x-1}\,dx &= \int_{0}^{1} (u+1) \sqrt{u}\,du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du \\[2ex]
&= \frac{2}{5} U^\frac{5}{2} + \frac{2}{3} ubigg^\frac{3}{2}| _{0}^{1}  =\frac{2}{5} + \frac{2}{3} \\[2ex]
&= \frac{2}{5} U^\frac{5}{2} + \frac{2}{3} biggu^\frac{3}{2}| _{0}^{1}  =\frac{2}{5} + \frac{2}{3} \\[2ex]
&= \frac{16}{15}\\[2ex]
&= \frac{16}{15}\\[2ex]
\end{align}
\end{align}
</math>
</math>

Revision as of 22:57, 13 September 2022