5.5 The Substitution Rule/65: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 18: Line 18:
<math>
<math>
\begin{align}
\begin{align}
\int_{1}^{2} (x \sqrt{x-1}\,)\;dx &= \int_{0}^{1} ((u+1) \sqrt{u})\;du = \int_{0}^{1} (u^ \frac{3}{2} + \sqrt{u})\;du \\[2ex]
\int_{1}^{2} (x \sqrt{x-1}\,)\;dx &= \int_{0}^{1} ((u+1) \sqrt{u})\;du = \int_{0}^{1} (u^ \frac{3}{2} + u^ \frac{1}{2};du \\[2ex]
&= (\frac{2}{5} u^\frac{5}{2} + \frac{2}{3} u^\frac{3}{2})\bigg| _{0}^{1}  =\frac{2}{5} + \frac{2}{3} \\[2ex]
&= (\frac{2}{5} u^\frac{5}{2} + \frac{2}{3} u^\frac{3}{2})\bigg| _{0}^{1}  =\frac{2}{5} + \frac{2}{3} \\[2ex]
&= \frac{16}{15}\\[2ex]
&= \frac{16}{15}\\[2ex]
\end{align}
\end{align}
</math>
</math>

Revision as of 23:10, 13 September 2022