5.5 The Substitution Rule/21: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt | \int \frac{\cos{(\sqrt{t})}}{\sqrt{t}}\;dt | ||
</math> | </math> | ||
Line 8: | Line 8: | ||
u &= \sqrt{t} \\[2ex] | u &= \sqrt{t} \\[2ex] | ||
du &= \frac{1}{2}\ \frac{1}{\sqrt{t}} dt \\[2ex] | du &= \frac{1}{2}\ \frac{1}{\sqrt{t}}\;dt \\[2ex] | ||
2du &= \frac{1}{\sqrt{t}} dt | 2du &= \frac{1}{\sqrt{t}}\;dt | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Line 17: | Line 17: | ||
\begin{align} | \begin{align} | ||
\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt &= 2\int \cos {u} du \\[2ex] | \int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt &= 2\int \cos {u}\;du \\[2ex] | ||
&= 2 \sin{u}+c \\[2ex] | &= 2 \sin{u}+c \\[2ex] | ||
&= 2 \sin(\sqrt{t}) + c \\[2ex] | &= 2 \sin(\sqrt{t}) + c \\[2ex] |
Revision as of 23:17, 13 September 2022