5.5 The Substitution Rule/21: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>
<math>
\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt  
\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}}\;dt  
</math>
</math>


Line 8: Line 8:


u &= \sqrt{t} \\[2ex]
u &= \sqrt{t} \\[2ex]
du &= \frac{1}{2}\ \frac{1}{\sqrt{t}} dt \\[2ex]
du &= \frac{1}{2}\ \frac{1}{\sqrt{t}}\;dt \\[2ex]
2du &= \frac{1}{\sqrt{t}} dt
2du &= \frac{1}{\sqrt{t}}\;dt
\end{align}
\end{align}
</math>
</math>
Line 17: Line 17:
\begin{align}
\begin{align}


\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt &= 2\int \cos {u} du \\[2ex]
\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt &= 2\int \cos {u}\;du \\[2ex]
&= 2 \sin{u}+c \\[2ex]
&= 2 \sin{u}+c \\[2ex]
&= 2 \sin(\sqrt{t}) + c \\[2ex]
&= 2 \sin(\sqrt{t}) + c \\[2ex]

Revision as of 23:17, 13 September 2022