6.1 Areas Between Curves/23: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 29: | Line 29: | ||
\int_{0}^{\frac{\pi}{6}} \left(\cos(x) - \sin(2x) \right)dx &= \left[\sin(x)+\frac{1}{2}\cos(2x) \right]\Bigg|_{0}^{\frac{\pi}{6}} \\[2ex] | \int_{0}^{\frac{\pi}{6}} \left(\cos(x) - \sin(2x) \right)dx &= \left[\sin(x)+\frac{1}{2}\cos(2x) \right]\Bigg|_{0}^{\frac{\pi}{6}} \\[2ex] | ||
&= [\sin(\frac{\pi}{6})+\frac{1}{2}\cos(2(\frac{\pi}{6}))]-[\sin(0)+\frac{1}{2}\cos(2(0))] | &= [\sin(\frac{\pi}{6})+\frac{1}{2}\cos(2(\frac{\pi}{6}))]-[\sin(0)+\frac{1}{2}\cos(2(0))] \\[2ex] | ||
&= \frac{1}{2}+\frac{1}{4}-(0+\frac{1}{2}) | &= \frac{1}{2}+\frac{1}{4}-(0+\frac{1}{2}) | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 01:51, 20 September 2022