6.1 Areas Between Curves/23: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 41: | Line 41: | ||
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left[\sin(2x)-\cos(x)\right]dx &= \left[-\frac{1}{2}\cos(2x) - \sin(x) \right]\Bigg|_{\frac{\pi}{6}}^{\frac{\pi}{2}} \\ [2ex] | \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left[\sin(2x)-\cos(x)\right]dx &= \left[-\frac{1}{2}\cos(2x) - \sin(x) \right]\Bigg|_{\frac{\pi}{6}}^{\frac{\pi}{2}} \\ [2ex] | ||
&= \left[-\frac{1}{2}\cos(\frac{2\pi}{2})-\sin(\frac{\pi}{2})\right] - \left[-\frac{1}{2}\cos(\frac{2\pi}{6}) - \sin(\frac{\pi}{6})\right] | &= \left[-\frac{1}{2}\cos(\frac{2\pi}{2})-\sin(\frac{\pi}{2})\right] - \left[-\frac{1}{2}\cos(\frac{2\pi}{6}) - \sin(\frac{\pi}{6})\right] \\[2ex] | ||
&= \frac{1}{2}/left(\frac{1}{2}\right) | &= \frac{1}{2}/left(\frac{1}{2}\right) \\ | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 02:05, 20 September 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left[\sin(2x)-\cos(x)\right]dx &= \left[-\frac{1}{2}\cos(2x) - \sin(x) \right]\Bigg|_{\frac{\pi}{6}}^{\frac{\pi}{2}} \\ [2ex] &= \left[-\frac{1}{2}\cos(\frac{2\pi}{2})-\sin(\frac{\pi}{2})\right] - \left[-\frac{1}{2}\cos(\frac{2\pi}{6}) - \sin(\frac{\pi}{6})\right] \\[2ex] &= \frac{1}{2}/left(\frac{1}{2}\right) \\ \end{align} }