6.1 Areas Between Curves/27: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 13: Line 13:
</math>
</math>


<math>\int_{0}^{1} \left(x-\frac{1}{4}x\right)\,dx + \int_{1}^{2}  \left|(\frac{1}{x}-\frac{1}{4}x)\right|dx = \int_{0}^{1} \left|(\frac{3}{4}x)\right|dx + \int_{1}^{2} \left|(\frac{1}{x})\right|dx - \int_{1}^{2} \left|(\frac{1}{4}x)\right|dx =   
 
<math>\int_{0}^{1} \left(x-\frac{1}{4}x\right)dx + \int_{1}^{2}  \left(\frac{1}{x}-\frac{1}{4}x\right)dx = \int_{0}^{1} \left(\frac{3}{4}x\right)dx + \int_{1}^{2} \left(\frac{1}{x}\right)dx - \int_{1}^{2} \left(\frac{1}{4}x\right)dx =   
</math>
</math>


Line 19: Line 20:
\begin{align}
\begin{align}


&= \left[\frac{3x^2}{8}\right]\Bigg|_{0}^{1} + \left[\ln(x)\right]\Bigg|_{1}^{2} - \left[\frac{1}{8} x^2\right]\Bigg|_{1}^{2}=
&= \left[\frac{3x^2}{8}\right]\Bigg|_{0}^{1} + \left[\ln|x|\right]\Bigg|_{1}^{2} - \left[\frac{1}{8} x^2\right]\Bigg|_{1}^{2}=
&= \left[\frac{3(1)^2}{8}\right] + \left[ln(2)-ln(1)\right] - \left[\frac{1}{8} (2)^2 - \frac{1}{8} (1)^2\right]  \\[2ex]
&= \left[\frac{3(1)^2}{8}\right] + \left[ln|2|-ln|1|\right] - \left[\frac{1}{8} (2)^2 - \frac{1}{8} (1)^2\right]  \\[2ex]
&= frac{3}{8} + ln(2)] - \frac{3}{8}
&= \frac{3}{8} + ln|2| - \frac{3}{8}
&= ln(2)
&= ln(2)
\end{align}
\end{align}
</math>
</math>

Revision as of 19:16, 20 September 2022

Desmos-graph100.png