6.1 Areas Between Curves/10: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 37: | Line 37: | ||
<math> \int_{0}^{9} \left(1+\sqrt{x} - \frac{3+x}{3}\right)dx = x + \frac{2x^\frac{3}{2}}3\Bigg|_{0}^{9} - \left | <math> \int_{0}^{9} \left(1+\sqrt{x} - \frac{3+x}{3}\right)dx = x + \frac{2x^\frac{3}{2}}3\Bigg|_{0}^{9} - \left\frac{1}3\int_{0}^{9}(3+x\right)dx = x + \frac{2x^\frac{3}{2}}3\Bigg|_{0}^{9} - \frac{{1}}3(\frac{{x^2}}3+3x)\Bigg|_{0}^{9} = 9 + \frac{{2(27)}}3 - \frac{{9^2}}2(3) - 9 = \frac{54}3 - \frac{81}6 = \frac{108}6 - \frac{81}6 = \frac{27}6 = \frac{9}2 </math> |
Revision as of 19:27, 20 September 2022
Failed to parse (syntax error): {\displaystyle \int_{0}^{9} \left(1+\sqrt{x} - \frac{3+x}{3}\right)dx = x + \frac{2x^\frac{3}{2}}3\Bigg|_{0}^{9} - \left\frac{1}3\int_{0}^{9}(3+x\right)dx = x + \frac{2x^\frac{3}{2}}3\Bigg|_{0}^{9} - \frac{{1}}3(\frac{{x^2}}3+3x)\Bigg|_{0}^{9} = 9 + \frac{{2(27)}}3 - \frac{{9^2}}2(3) - 9 = \frac{54}3 - \frac{81}6 = \frac{108}6 - \frac{81}6 = \frac{27}6 = \frac{9}2 }