5.4 Indefinite Integrals and the Net Change Theorem/27: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
\int_{1}^{4}\sqrt{t}(1+t)dt =\int_{1}^{4}\left(t^{\frac{1}{2}}+t^{\frac{3}{2}}\right)dt | \int_{1}^{4}\sqrt{t}(1+t)dt &=\int_{1}^{4}\left(t^{\frac{1}{2}}+t^{\frac{3}{2}}\right)dt \\[2ex] | ||
=\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5} | &=\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5} | ||
=\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5}\bigg|_{1}^{4} | =\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5}\bigg|_{1}^{4} |
Revision as of 15:08, 21 September 2022