5.4 Indefinite Integrals and the Net Change Theorem/29: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
\int_{-2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy &= \int_{-2}^{-1}\left(4y^3+2y^{-3}\right)dy\\[2ex] | \int_{-2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy &= \int_{-2}^{-1}\left(4y^3+2y^{-3}\right)dy\\[2ex] | ||
&= \left[y^4-y^-2\right]_{-2}^{-1} \\[2ex] | &= \left[y^{4}-y^{-2}\right]_{-2}^{-1} \\[2ex] | ||
&= (1-1)-\left(16-\frac{1}{4}\right) \\[2ex] | &= (1-1)-\left(16-\frac{1}{4}\right) \\[2ex] | ||
&= \frac{-63}{4} | &= \frac{-63}{4} |
Revision as of 15:19, 21 September 2022