5.4 Indefinite Integrals and the Net Change Theorem/37: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
\int_{0}^{\frac{\pi}{4}}\left(\frac{1+\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta | \int_{0}^{\frac{\pi}{4}}\left(\frac{1+\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta | ||
&= \int_{0}^{\frac{\pi}{4}}\left(\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta | &= \int_{0}^{\frac{\pi}{4}}\left(\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta | ||
& =\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex] | & =\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex] | ||
Line 15: | Line 14: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
= \int_{0}^{\frac{\pi}{4}}sec^2(\theta)} + 1 \\[2ex] |
Revision as of 16:00, 21 September 2022
= \int_{0}^{\frac{\pi}{4}}sec^2(\theta)} + 1 \\[2ex]