5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
= \int_{1}^{64}\left(x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}\right)dx = \int_{1}^{64}\left(x^{-\frac{1}{2}}+x^{-\frac{1}{6}}\right)dx \\[2ex] | = \int_{1}^{64}\left(x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}\right)dx = \int_{1}^{64}\left(x^{-\frac{1}{2}}+x^{-\frac{1}{6}}\right)dx \\[2ex] | ||
&= \left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}}\right]_{1}^{64} = 2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6} | &= \left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}}\right]_{1}^{64} = \left[2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}\right]_{1}^{64} \\[2ex] | ||
&= 2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64} | |||
\end{align} | \end{align} |
Revision as of 16:21, 21 September 2022
= =
=
= =
=