5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
&= \left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}}\right]_{1}^{64} = \left[2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}\right]_{1}^{64} \\[2ex] | &= \left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}}\right]_{1}^{64} = \left[2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}\right]_{1}^{64} \\[2ex] | ||
&= \left[2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6}\right] - \left[(2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})\right] \\[2ex] | &= \left[2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6}\right] - \left[(2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})\right] \\[2ex] |
Revision as of 16:24, 21 September 2022