5.5 The Substitution Rule/61: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 24: | Line 24: | ||
\int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx &= \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,(dx) \\[2ex] | \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,dx &= \int_{0}^{13}\frac{1}{\sqrt[3]{(1+2x)^2}}\,(dx) \\[2ex] | ||
&= \int_{1}^{27}\frac{1}{\sqrt[3]{u^2}}\left(\frac{1}{2}du\right) = \frac{1}{2}\int_{1}^{27} {u}^{-2/3}du \\[2ex] | &= \int_{1}^{27}\frac{1}{\sqrt[3]{u^2}}\left(\frac{1}{2}du\right) = \frac{1}{2}\int_{1}^{27} {u}^{-2/3}du \\[2ex] | ||
&= \frac{1}{2}{u}^{1/3}\bigg|_{0}^{\pi} \\[2ex] | &= \frac{1}{2}\frac{{u}^{1/3}}{3}\bigg|_{0}^{\pi} \\[2ex] | ||
&= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex] | &= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex] | ||
&= 0 | &= 0 |
Revision as of 04:14, 22 September 2022
New upper limit:
New lower limit: