5.5 The Substitution Rule/11: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
\int (x+1)\sqrt{2x+x^{2}}dx &= \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex] | \int (x+1)\sqrt{2x+x^{2}}dx &= \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex] | ||
&= \frac{1]{2}(\frac{2u^{3}{2}}{3}) + C | |||
&= \frac{1}{3}\(u)^{\frac{3}{2}} + C | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 21:18, 22 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int (x+1)\sqrt{2x+x^{2}}dx &= \frac{1}{2}\int\sqrt{u}du = \frac{1}{2}\int u^{\frac{1}{2}}du \\[2ex] &= \frac{1]{2}(\frac{2u^{3}{2}}{3}) + C &= \frac{1}{3}\(u)^{\frac{3}{2}} + C \end{align} }