6.1 Areas Between Curves/12: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 26: Line 26:




<math>
\begin{align}
\int_{-3}^{-2}\left((x^2)-(8-x^2)\right)dx &= \int_{-3}^{-2}\left(2x^2-8)\right)dx \\[2ex]


&= \left[\frac{2x^3}{3}-8x\right]\Bigg|_{-3}^{-2} \\[2ex]
&= \left[\frac{4x^2}{2}\right]\Bigg|_{0}^{2} \\[2ex]


&= \left[\frac{2(-2)^3}{3}-8(-2)\right]-\left[\frac{2(-3)^3}{3}-8(-3)\right] \\[2ex]
&= \left[2x^2\right]-\left[\frac{2(-3)^3}{3}-8(-3)\right] \\[2ex]


&= \left[\frac{-16}{3}+16\right]-\left[\frac{-54}{3}+24\right] = \frac{38}{3}-8 \\[2ex]
&= \left[\frac{-16}{3}+16\right]-\left[\frac{-54}{3}+24\right] = \frac{38}{3}-8 \\[2ex]

Revision as of 23:17, 22 September 2022



Failed to parse (syntax error): {\displaystyle \int_{0}^{2} \left[(4x-x^2) - (x^2)\right]dx = \int_{0}^{2}(4x)dx &= \left[\frac{4x^2}{2}\right]\Bigg|_{0}^{2} \\[2ex] &= \left[2x^2\right]-\left[\frac{2(-3)^3}{3}-8(-3)\right] \\[2ex] &= \left[\frac{-16}{3}+16\right]-\left[\frac{-54}{3}+24\right] = \frac{38}{3}-8 \\[2ex] &= \frac{14}{3} \end{align} }