6.1 Areas Between Curves/25: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
&= \left[2\arctan(1)-\frac{(1)^{3}}{3}\right]-\left[(2\arctan(-1)-\frac{(-1)^{3}}{3}\right] \\[2ex] | &= \left[2\arctan(1)-\frac{(1)^{3}}{3}\right]-\left[(2\arctan(-1)-\frac{(-1)^{3}}{3}\right] \\[2ex] | ||
&= \left[\frac{2\pi}{4}-\frac{1}{3}\right] - \left[\frac{ | &= \left[\frac{2\pi}{4}-\frac{1}{3}\right] - \left[\-frac{2\pi}{4}\right] \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 20:58, 23 September 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{1}^{-1}\left(\frac{2}{({x^2}+1)}\right) - \left(x^{2}\right) dx &= \int_{1}^{-1}\left(2\cdot\frac{1}{(x^{2}+1)}\right)-\left(x^{2}\right) dx \\[2ex] &= \left[2\arctan(x)-\frac{x^{3}}{3}\right]\Bigg|_{-1}^{1} \\[2ex] &= \left[2\arctan(1)-\frac{(1)^{3}}{3}\right]-\left[(2\arctan(-1)-\frac{(-1)^{3}}{3}\right] \\[2ex] &= \left[\frac{2\pi}{4}-\frac{1}{3}\right] - \left[\-frac{2\pi}{4}\right] \\[2ex] \end{align} }