5.5 The Substitution Rule/55: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 18: Line 18:
\begin{align}
\begin{align}


\int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt &= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex]
\int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt  
 
&= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex]


&= 4\cdot \tan^2(u)
&= 4\cdot \tan^2(u)

Revision as of 16:08, 4 October 2022



Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt &= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] &= 4\cdot \tan^2(u) \end{align} }