5.5 The Substitution Rule/55: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:


\int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt  
\int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt  
&= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex]




Line 28: Line 26:


= 4\cdot \tan^2(u)
= 4\cdot \tan^2(u)
&= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex]

Revision as of 16:10, 4 October 2022



Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{0}^(\pi} \sec^2\left(\frac{t}{4}\right)dt \end{align} }

= 4\cdot \tan^2(u) &= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex]