5.5 The Substitution Rule/55: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
\int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt | \int_{0}^{\pi} \sec^2\left(\frac{t}{4}\right)dt | ||
&= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] | &= 4\int_{0}^{\pi} \sec^2(u)du \\[2ex] | ||
&= 4\cdot \tan^2(u) | &= 4\cdot \tan^2(u) = 4\cdot \tan^2\left(\frac{1}{4}\right)\bigg|_{0}^{\pi} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 16:15, 4 October 2022