5.3 The Fundamental Theorem of Calculus/8: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}
g(x)=\int_{3}^{x}e^{t^2-t}dt \\
g(x)=\int_{3}^{x}e^{t^2-t}dt \\
\frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{3^2-3}=e^{x^2-x} \\
\frac{d}{dx}\left[g(x)\right] = \frac{d}{dx}\left[\int_{3}^{x}e^{t^2-t}dt\right]=1e^{x^2-x}-0e^{3^2-3}=e^{x^2-x}  
\text{Therefore, } g'(x)=e^{x^2-x} \\
\text{Therefore, } g'(x)=e^{x^2-x} \\



Revision as of 20:33, 23 August 2022