5.3 The Fundamental Theorem of Calculus/28: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
\int_{0}^{1}\left(3+x\sqrt{x}\right)dx &= \int_{0}^{1}\left(3+x^{1}{x}^{\frac{1}{2}}\right)dx  
\int_{0}^{1}\left(3+x\sqrt{x}\right)dx &= \int_{0}^{1}\left(3+x^{1}{x}^{\frac{1}{2}}\right)dx  
= \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx  = \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx \\
= \int_{0}^{1}\left(3+x^{1+\frac{1}{2}}\right)dx  = \int_{0}^{1}\left(3+x^{\frac{3}{2}}\right)dx \\
&= 3x+\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\bigg|_{0}^{1} = 3x+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\bigg|_{0}^{1} = 3x+\frac{2x^{5/2}}{5}\bigg|_{0}^{1}
&= 3x+\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\bigg|_{0}^{1} = 3x+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\bigg|_{0}^{1} = 3x+\frac{2x^{5/2}}{5}\bigg|_{0}^{1} \\
&=  
&= 3(1)+3x+\frac{2(1)^{5/2}}{5}-3(0)+\frac{2(0)^{5/2}}{5} =  


\end{align}
\end{align}

Revision as of 21:41, 23 August 2022