5.3 The Fundamental Theorem of Calculus/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
<math>y=\int\limits_{1-3x}^{1}\frac{1}{(1+u^2)}x^3, dx</math> | <math>y=\int\limits_{1-3x}^{1}\frac{1}{(1+u^2)}x^3, dx</math> | ||
=<math>(0)*f(1)-(-3)*f(1-3x)</math> | using the formula we get y=<math>(0)*f(1)-(-3)*f(1-3x)</math> | ||
<math>(3)*f(1-3x)</math> | <math>(3)*f(1-3x)</math> | ||
=<math>3*(1-3x)^3*\frac{1}{(1+(1-3x)^2)}x^3+c</math> | =<math>3*(1-3x)^3*\frac{1}{(1+(1-3x)^2)}x^3+c</math> |
Revision as of 01:52, 24 August 2022
FTC #1
or in other words of is
so
using the formula we get y=
=