5.3 The Fundamental Theorem of Calculus/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
<math>y=\int\limits_{1-3x}^{1}\frac{1}{(1+u^2)}x^3, dx</math>
<math>y=\int\limits_{1-3x}^{1}\frac{1}{(1+u^2)}x^3, dx</math>


=<math>(0)*f(1)-(-3)*f(1-3x)</math>
using the formula we get y=<math>(0)*f(1)-(-3)*f(1-3x)</math>
<math>(3)*f(1-3x)</math>
<math>(3)*f(1-3x)</math>


=<math>3*(1-3x)^3*\frac{1}{(1+(1-3x)^2)}x^3+c</math>
=<math>3*(1-3x)^3*\frac{1}{(1+(1-3x)^2)}x^3+c</math>

Revision as of 01:52, 24 August 2022

FTC #1

or in other words of is

so

using the formula we get y=

=