5.3 The Fundamental Theorem of Calculus/35: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|}
&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|}


&= \ln{|9|}
&= \ln{|9^{\frac{1}{2}}




\end {align}
\end {align}
</math>
</math>

Revision as of 19:28, 25 August 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{1}^{9}\frac{1}{2x}dx = \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx &= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} &= \ln{|9^{\frac{1}{2}} \end {align} }