5.3 The Fundamental Theorem of Calculus/35: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} | &= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} | ||
&= \ln{|9 | &= \ln{|9^{\frac{1}{2}} | ||
\end {align} | \end {align} | ||
</math> | </math> |
Revision as of 19:28, 25 August 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{1}^{9}\frac{1}{2x}dx = \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx &= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} &= \ln{|9^{\frac{1}{2}} \end {align} }