5.3 The Fundamental Theorem of Calculus/35: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} | &= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} \\[2ex] | ||
&= \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3} \\[2ex] | &= \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3} \\[2ex] |
Revision as of 19:40, 25 August 2022