5.3 The Fundamental Theorem of Calculus/25: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


\int_{1}^{2}\left(frac{t^4}{r}/right)dt = \int_{1}^{2}
\int_{1}^{2}\left(\frac{3}{t^4}\right)dt = \int_{1}^{2}\left(\{3t^-4}\right)
 
&= /frac{3t^-4}{-3}\bigg|_{1}^{2} = -t^-3 \bigg|_{1}^{2
 
&= \left[-(2)^-3\right]-\left[-(1)^-3\right] \\[2ex]
 
&= 1+\frac{-1}{8} = \frac{7}{8}


\end{align}
\end{align}
</math>
</math>

Revision as of 19:56, 25 August 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{1}^{2}\left(\frac{3}{t^4}\right)dt = \int_{1}^{2}\left(\{3t^-4}\right) &= /frac{3t^-4}{-3}\bigg|_{1}^{2} = -t^-3 \bigg|_{1}^{2 &= \left[-(2)^-3\right]-\left[-(1)^-3\right] \\[2ex] &= 1+\frac{-1}{8} = \frac{7}{8} \end{align} }