5.3 The Fundamental Theorem of Calculus/25: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
&= \left[-(2)^-3\right]-\left[-(1)^-3\right] \\[2ex] | &= \left[-(2)^-3\right]-\left[-(1)^-3\right] \\[2ex] | ||
&= 1 | &= 1-\frac{1}{8} = \frac{7}{8} |
Revision as of 20:09, 25 August 2022
\int_{1}^{2}\left(\frac{3}{t^4}\right)dt = \int_{1}^{2}\left(\{3t^-4}\right) \\
&= \frac{3t^-4}{-3}\bigg|_{1}^{2} = -t^-3 \bigg|_{1}^{2} \\
&= \left[-(2)^-3\right]-\left[-(1)^-3\right] \\[2ex]
&= 1-\frac{1}{8} = \frac{7}{8}