6.1 Angles and Their Measure/36: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>
<math>
\frac{\pi}{2}^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{\cancel{2}\cdot \cancel{2}\cdot 2\cdot \cancel{3}\cdot \cancel{5}}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3}
\frac{\pi}{2}^{\circ}\cdot\frac{\180}{pi^{\circ}}=\frac{\cancel{2}\cdot \cancel{2}\cdot 2\cdot \cancel{3}\cdot \cancel{5}}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3}


= \frac{2\pi}{3}
= \frac{2\pi}{3}


</math>
</math>

Revision as of 21:43, 25 August 2022

Failed to parse (syntax error): {\displaystyle \frac{\pi}{2}^{\circ}\cdot\frac{\180}{pi^{\circ}}=\frac{\cancel{2}\cdot \cancel{2}\cdot 2\cdot \cancel{3}\cdot \cancel{5}}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} = \frac{2\pi}{3} }