6.1 Angles and Their Measure/36: Difference between revisions
Jump to navigation
Jump to search
No edit summary Tag: Manual revert |
No edit summary Tag: Manual revert |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
\frac{\pi}{2}^{\circ}\cdot\frac{180}{\pi}{\circ}}=\frac{\cancel{2}\cdot \cancel{2}\cdot 2\cdot \cancel{3}\cdot \cancel{5}}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} | \frac{\pi}{2}^{\circ}\cdot\frac{180}{\pi}^{\circ}}=\frac{\cancel{2}\cdot \cancel{2}\cdot 2\cdot \cancel{3}\cdot \cancel{5}}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} | ||
= \frac{2\pi}{3} | = \frac{2\pi}{3} | ||
</math> | </math> |
Revision as of 21:44, 25 August 2022
Failed to parse (syntax error): {\displaystyle \frac{\pi}{2}^{\circ}\cdot\frac{180}{\pi}^{\circ}}=\frac{\cancel{2}\cdot \cancel{2}\cdot 2\cdot \cancel{3}\cdot \cancel{5}}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} = \frac{2\pi}{3} }