6.2 Trigonometric Functions: Unit Circle Approach/14: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
\sin{(t)} &= -\frac{\sqrt{3}}{2} \\[2ex] | \sin{(t)} &= -\frac{\sqrt{3}}{2} \\[2ex] | ||
\cos{(t)} &= \frac{1}{2} \\ | \cos{(t)} &= \frac{1}{2} \\[2ex] | ||
\tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} \\ | \tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} \\ | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 21:56, 25 August 2022