6.2 Trigonometric Functions: Unit Circle Approach/13: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math>\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)</math> <math> \begin{align} \sin{(t)} &= -\frac{\sqrt{3}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] \cos{(t)} &= \frac{1}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] \tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\s...") |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\left(\frac{3}{2}, -\frac{\sqrt{1}}{2}\right)</math> | |||
<math> | |||
\begin{align} | |||
\sin{(t)} &= -\frac{\sqrt{3}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] | |||
\cos{(t)} &= \frac{1}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | |||
\tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] | |||
\end{align} | |||
</math> | |||
<math>\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)</math> | <math>\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)</math> | ||
Revision as of 22:21, 25 August 2022