6.2 Trigonometric Functions: Unit Circle Approach/48: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
\sin{\left(\frac{5\pi}{6}\right)} &= \frac{1}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] | \sin{\left(\frac{5\pi}{6}\right)} &= \frac{1}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] | ||
\cos{\left(\frac{5\pi}{6}\right)} &= \frac{ | \cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | ||
\tan{\left(\frac{5\pi}{6}\right)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] | \tan{\left(\frac{5\pi}{6}\right)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 22:25, 25 August 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \sin{\left(\frac{5\pi}{6}\right)} &= \frac{1}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] \cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] \tan{\left(\frac{5\pi}{6}\right)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] \end{align} }