6.2 Trigonometric Functions: Unit Circle Approach/48: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
\cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}}{2}        & \sec{\left(\frac{5\pi}{6}\right)} &= \frac{2}{1} = 2\\[2ex]  
\cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}}{2}        & \sec{\left(\frac{5\pi}{6}\right)} &= \frac{2}{1} = 2\\[2ex]  


\tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{\left(\frac{5\pi}{6}\right)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]
\tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = -\frac{1}{2}\cdot\frac{2}{-\sqrt{3}} = -\sqrt{3}  
 
 
 
& \cot{\left(\frac{5\pi}{6}\right)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 22:28, 25 August 2022