6.2 Trigonometric Functions: Unit Circle Approach/48: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 10: Line 10:
\tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3}
\tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3}


& \cot{\left(\frac{5\pi}{6}\right)} &= -\frac{\sqrt{3}}{1}=-\frac{1}{\sqrt{3}} = -\sqrt{3} \\[2ex]
& \cot{\left(\frac{5\pi}{6}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Latest revision as of 22:36, 25 August 2022