6.2 Trigonometric Functions: Unit Circle Approach/53: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
\cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex]  
\cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex]  


\tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{{1}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3}
\tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{{1}}{2}} = \left(2\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3}


& \cot{\left(\frac{8\pi}{3}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex]  \end{align} </math>
& \cot{\left(\frac{8\pi}{3}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex]  \end{align} </math>

Revision as of 03:47, 26 August 2022