6.2 Trigonometric Functions: Unit Circle Approach/53: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
\tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{{1}}{2}} = \left(2\right) = \frac{\sqrt{3}}{-1} = -\sqrt{3} | \tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{{1}}{2}} = \left(2\right) = \frac{\sqrt{3}}{-1} = -\sqrt{3} | ||
& \cot{\left(\frac{8\pi}{3}\right)} &= \frac{-\frac{1}{2}} {\frac{\sqrt{3}}{2}} \cdot 2 = \frac{-1}{\sqrt{3}} \cdot \sqrt{3}= \\[2ex] \end{align} </math> | & \cot{\left(\frac{8\pi}{3}\right)} &= \frac{-\frac{1}{2}} {\frac{\sqrt{3}}{2}} \cdot 2 = \frac{-1}{\sqrt{3}} \cdot \sqrt{3}= \frac{-\sqrt{3}}{3} \\[2ex] \end{align} </math> |
Revision as of 04:09, 26 August 2022