6.2 Trigonometric Functions: Unit Circle Approach/13: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary Tag: Manual revert |
||
Line 4: | Line 4: | ||
\begin{align} | \begin{align} | ||
\sin{(t)} &= - | \sin{(t)} &= -\frac{\sqrt{3}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] | ||
\cos{(t)} &= \frac{1}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | \cos{(t)} &= \frac{1}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | ||
\tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] | \tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] |
Revision as of 16:35, 26 August 2022