6.2 Trigonometric Functions: Unit Circle Approach/78: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 22: Line 22:
\sin{(\theta)} &= \frac{-12}{13} & \csc{(\theta)} &= \frac{2}{1}=2\\[2ex]
\sin{(\theta)} &= \frac{-12}{13} & \csc{(\theta)} &= \frac{2}{1}=2\\[2ex]


\cos{(\theta)} &= \frac{-\sqrt{3}}{2} & \sec{(\theta)} &= 3\\[2ex]
 


\tan{(\theta)} &= \frac{\frac{1}{2}} & \cot{(\theta)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex]
\tan{(\theta)} &= \frac{\frac{1}{2}} & \cot{(\theta)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex]

Revision as of 17:01, 26 August 2022





Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \sin{(\theta)} &= \frac{-12}{13} & \csc{(\theta)} &= \frac{2}{1}=2\\[2ex] \tan{(\theta)} &= \frac{\frac{1}{2}} & \cot{(\theta)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] \end{align} }