6.2 Trigonometric Functions: Unit Circle Approach/13: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
\begin{align}
\begin{align}


\sin{(t)} &= \frac{1}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex]
\sin{(t)} &= \frac{1}{2} & \csc{(t)} &= \frac{1}{\frac{1}{2}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex]
\cos{(t)} &= \frac{\sqrt{3}}{2}        & \sec{(t)} &= \frac{2}{1} = 2\\[2ex]  
\cos{(t)} &= \frac{\sqrt{3}}{2}        & \sec{(t)} &= \frac{2}{1} = 2\\[2ex]  
\tan{(t)} &= \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} = \frac{1}{\cancel{\sqrt{3}}} \cdot \frac{\cancel{\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}}{3} & \cot{(t)}  &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]
\tan{(t)} &= \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} = \frac{1}{\cancel{\sqrt{3}}} \cdot \frac{\cancel{\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}}{3} & \cot{(t)}  &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]

Revision as of 17:01, 26 August 2022