6.2 Trigonometric Functions: Unit Circle Approach/13: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
\sin{(t)} &= \frac{1}{2} & \csc{(t)} &= \frac{1}{\frac{1}{2}}=2\\[2ex] | \sin{(t)} &= \frac{1}{2} & \csc{(t)} &= \frac{1}{\frac{1}{2}}=2\\[2ex] | ||
\cos{(t)} &= \frac{\sqrt{3}}{2} & \sec{(t)} &= \frac{1}{\frac{\sqrt{3}}{2}} = 2\\[2ex] | \cos{(t)} &= \frac{\sqrt{3}}{2} & \sec{(t)} &= \frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{sqrt{3}} = 2\\[2ex] | ||
\tan{(t)} &= \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} = \frac{1}{\cancel{\sqrt{3}}} \cdot \frac{\cancel{\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}}{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] | \tan{(t)} &= \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} = \frac{1}{\cancel{\sqrt{3}}} \cdot \frac{\cancel{\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}}{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 17:06, 26 August 2022