6.2 Trigonometric Functions: Unit Circle Approach/13: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
\sin{(t)} &= \frac{1}{2} & \csc{(t)} &= \frac{1}{\frac{1}{2}}=2\\[2ex]
\sin{(t)} &= \frac{1}{2} & \csc{(t)} &= \frac{1}{\frac{1}{2}}=2\\[2ex]
\cos{(t)} &= \frac{\sqrt{3}}{2}        & \sec{(t)} &= \frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}\\[2ex]  
\cos{(t)} &= \frac{\sqrt{3}}{2}        & \sec{(t)} &= \frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}\\[2ex]  
\tan{(t)} &= \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} = \frac{1}{\cancel{\sqrt{3}}} \cdot \frac{\cancel{\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}}{3} & \cot{(t)}  &= \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \\[2ex]
\tan{(t)} &= \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} = \frac{1}{\cancel{\sqrt{3}}} \cdot \frac{\cancel{\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}}{3} & \cot{(t)}  &= \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\frac{sqrt{3}}{2}/cdot 2 \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 17:11, 26 August 2022