6.2 Trigonometric Functions: Unit Circle Approach/19: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
\cos{(t)} &= \frac{2\sqrt{2}}{3} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | \cos{(t)} &= \frac{2\sqrt{2}}{3} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | ||
\tan{(t)} &= \frac{-\frac{1}{3}}{\frac{2\sqrt{2}}{3}} = -\frac{1}{3}\cdot\frac{3}{2\sqrt{2}} = \frac{1}{2\sqrt{2}}\cdot\frac{ | \tan{(t)} &= \frac{-\frac{1}{3}}{\frac{2\sqrt{2}}{3}} = -\frac{1}{3}\cdot\frac{3}{2\sqrt{2}} = \frac{1}{2\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{4} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 17:13, 26 August 2022