2.1 Functions: Difference between revisions
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
== Lecture notes == | == Lecture notes == | ||
:1. How do you read <math>D=\{\forall x | x \in \Re, x\neq -5\} </math>?<br> | :1. How do you read <math>D=\{\forall x | x \in \Re, x\neq -5\} </math>?<br><br> | ||
:: Answer: <math>\begin{align}\overbrace{D}^{\text{the domain}} \underbrace{=}_{\text{is}} \overbrace{\{}^{\text{the set}} \underbrace{\forall x}_{\text{of all x}}\overbrace{|}^{\text{such that}}\underbrace{x\in\Re}_{\text{x is an element of the real number set}} \overbrace{, x \neq -5}^{\text{where x is not equal to -5}} \end{align}</math><br> | |||
:: Answer: <math>\begin{align}\overbrace{D}^{\text{the domain}} \underbrace{=}_{\text{is}} \overbrace{\{}^{\text{the set}} \underbrace{\forall x}_{\text{of all x}}\overbrace{|}^{\text{such that}}\underbrace{x\in\Re}_{\text{x is an element of the real number set}} \overbrace{, x \neq -5}^{\text{where x is not equal to -5}} \end{align}</math><br><br> | |||
:2. How do you covert from radical form to exponential form? | :2. How do you covert from radical form to exponential form? | ||
:: Answer: <math>\sqrt[m]{x^n}=x^{\frac{n}{m}}</math> | :: Answer: <math>\sqrt[m]{x^n}=x^{\frac{n}{m}}</math> |