5.3 The Fundamental Theorem of Calculus/27: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\int_2^0 x(2+x^5)dx = \int_2^0 (2x+x^6)dx</math><br> | <math>\int_2^0 x(2+x^5)dx = \int_2^0 (2x+x^6)dx</math><br> | ||
<math>= \left(\frac{2x^2}{1+1}+\frac{x^6+1}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2}</math><br> | <math>= \left(\frac{2x^2}{1+1}+\frac{x^6+1}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2}</math><br> | ||
<math>= \left((2)^2+\frac{(2)^7}{7}\right)-\left((0)^2+\frac{0^7}{7}\right)</math> | <math>= \left((2)^2+\frac{(2)^7}{7}\right)-\left((0)^2+\frac{0^7}{7}\right)</math><br> | ||
<math>= 4+\frac{2^7}{7}</math><br> | |||
<math>= frac{156}{7}</math> |
Revision as of 18:55, 26 August 2022