5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> \begin{align} \int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx &=\int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx &=x^2-2x^\frac{-1}{2}dx &=\frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C &=\frac{1}{3}x^3-4\sqrt{x}+C \end{align} </math>") |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx &=\int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx | \int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx | ||
&=\int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx | |||
&=x^2-2x^\frac{-1}{2}dx &=\frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C | &=x^2-2x^\frac{-1}{2}dx &=\frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C |
Revision as of 19:02, 26 August 2022