5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
(Created page with "<math> \begin{align} \int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx &=\int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx &=x^2-2x^\frac{-1}{2}dx &=\frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C &=\frac{1}{3}x^3-4\sqrt{x}+C \end{align} </math>")
 
No edit summary
Line 1: Line 1:
<math>
<math>
\begin{align}
\begin{align}
\int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx &=\int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx
\int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx  
 
&=\int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx


&=x^2-2x^\frac{-1}{2}dx &=\frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C
&=x^2-2x^\frac{-1}{2}dx &=\frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C

Revision as of 19:02, 26 August 2022